

.NET GC Internals

Mark phase
@konradkokosa / @dotnetosorg

1 / 36

.NET GC Internals

(Non-Concurrent) Mark phase

2 / 36

.NET GC Internals Agenda

Introduction - roadmap and fundamentals, source code, ...
Mark phase - roots, object graph traversal, mark stack, mark/pinned �ag, mark
list, ...
Concurrent Mark phase - mark array/mark word, concurrent visiting, �oating
garbage, write watch list, ...
Plan phase - gap, plug, plug tree, brick table, pinned plug, pre/post plug, ...
Sweep phase - free list threading, concurrent sweep, ...
Compact phase - relocate references, compact, ...
Generations - physical organization, card tables, ...
Allocations - bump pointer allocator, free list allocator, allocation context, ...

3 / 36

.NET GC Internals Agenda

Introduction - roadmap and fundamentals, source code, ...
Mark phase - roots, object graph traversal, mark stack, mark/pinned �ag, mark
list, ...
Concurrent Mark phase - mark array/mark word, concurrent visiting, �oating
garbage, write watch list, ...
Plan phase - gap, plug, plug tree, brick table, pinned plug, pre/post plug, ...
Sweep phase - free list threading, concurrent sweep, ...
Compact phase - relocate references, compact, ...
Generations - physical organization, card tables, ...
Allocations - bump pointer allocator, free list allocator, allocation context, ...
Roots internals - stack roots, GCInfo, partially/full interruptible methods, statics,
Thread-local Statics (TLS), ...

3 / 36

.NET GC Internals Agenda

Introduction - roadmap and fundamentals, source code, ...
Mark phase - roots, object graph traversal, mark stack, mark/pinned �ag, mark
list, ...
Concurrent Mark phase - mark array/mark word, concurrent visiting, �oating
garbage, write watch list, ...
Plan phase - gap, plug, plug tree, brick table, pinned plug, pre/post plug, ...
Sweep phase - free list threading, concurrent sweep, ...
Compact phase - relocate references, compact, ...
Generations - physical organization, card tables, ...
Allocations - bump pointer allocator, free list allocator, allocation context, ...
Roots internals - stack roots, GCInfo, partially/full interruptible methods, statics,
Thread-local Statics (TLS), ...
Q&A - "but why can't I manually delete an object?", ...

3 / 36

02. .NET GC Internals - Mark phase

This module agenda:

introduction
object graph
object graph traversal

implementation
traversal
pin/mark �ag
mark stack & mark list
vectorized mark list sorting "story"

inside code .NET runtime 😍

4 / 36

Mark phase

We need to know which objects are "live"...

5 / 36

Object graph

In memory:

6 / 36

Type data:

record A(B b, D d);
record B(int X);
record C(B b, F f);
record D(E e);
record E(G g);
record F(int X);
record G(int Z);

Object graph

In memory:

7 / 36

Type data:

record A(B b, D d);
record B(int X);
record C(B b, F f);
record D(E e);
record E(G g);
record F(int X);
record G(int Z);

Current "state":

var a = new A(..., ...);
var d = new D(...);
...we are here...

Object graph

In memory:

8 / 36

Type data:

record A(B b, D d);
record B(int X);
record C(B b, F f);
record D(E e);
record E(G g);
record F(int X);
record G(int Z);

Current "state":

var a = new A(..., ...);
var d = new D(...);
...we are here...

Object graph:

Object graph

In memory:

9 / 36

Object graph traversal

10 / 36

Object graph traversal

11 / 36

Object graph traversal

12 / 36

Object graph traversal

13 / 36

Object graph traversal

14 / 36

Object graph traversal

15 / 36

Object graph traversal

16 / 36

Object graph traversal

17 / 36

Object graph traversal

18 / 36

Object graph traversal

19 / 36

Object graph traversal

20 / 36

Object graph traversal

21 / 36

Object graph traversal

22 / 36

Object graph traversal

22 / 36

Object graph traversal

We have just discovered reachability of the objects (from at least one root) by
marking algorithm.

22 / 36

Object graph traversal

We have just discovered reachability of the objects (from at least one root) by
marking algorithm.

Reachability is the closest we can get to true "usability" - we don't know the future.
22 / 36

Object graph traversal - roots

stack
registers
static/thread-local static data
�nalization queue
inter-generational references ("cards", "card tables") - we will return to that...
...

23 / 36

Mark phase implementation

Sequentially for every root type (like stack, �nalization, ...):

1. Collect the roots into the "to visit list" (the mark stack)
2. For each given target address addr from the mark stack:

set pinning �ag (in the Header) - if the runtime says so
start traversal:

skip already visited object
mark an object (in the MT)
add outgoing references to the mark stack

24 / 36

Mark phase implementation

Sequentially for every root type (like stack, �nalization, ...):

1. Collect the roots into the "to visit list" (the mark stack)
2. For each given target address addr from the mark stack:

translate it to the proper address of a managed object - we will return to that...
set pinning �ag (in the Header) - if the runtime says so
start traversal:

skip already visited object
mark an object (in the MT)
add outgoing references to the mark stack

25 / 36

Mark phase implementation

Sequentially for every root type (like stack, �nalization, ...):

1. Collect the roots into the "to visit list" (the mark stack)
2. For each given target address addr from the mark stack:

translate it to the proper address of a managed object - we will return to that...
set pinning �ag (in the Header) - if the runtime says so
start traversal:

skip already visited object
mark an object (in the MT)
add its address to the mark list (if not over�owed)
add outgoing references to the mark stack

26 / 36

Mark stack: Mark list:

Mark phase - let's draw!

27 / 36

Mark phase

Findings:

mark and pinned �ags are added only during the GC - and cleared afterwards
at Plan phase

ie. by looking at a regular memory dump in-between GCs, we won't see those
bits set
diagnostics tool needs to traverse the graph from roots to notice an object is
pinned

mark stack is used as sa�er approach that recursion
mark list will help us later, if sorted
it is pretty a lot of work to do (and non-sequential memory access...)!

28 / 36

Dan Schechter - .NET Intrinsics in
CoreCLR 3.0

Peter Sollich - The .NET Garbage
Collector

Mark phase - "mark list sorting story"

29 / 36

https://www.youtube.com/watch?v=M6HaSvifxwQ
https://www.youtube.com/watch?v=LPcjSdob9AA

Dan Schechter - .NET Intrinsics in
CoreCLR 3.0

Peter Sollich - The .NET Garbage
Collector

Mark phase - "mark list sorting story"

Oct 2019 - "Dan, we could improve our mark list sorting with that..." - Peter

29 / 36

https://www.youtube.com/watch?v=M6HaSvifxwQ
https://www.youtube.com/watch?v=LPcjSdob9AA

Dan Schechter - .NET Intrinsics in
CoreCLR 3.0

Peter Sollich - The .NET Garbage
Collector

Mark phase - "mark list sorting story"

Oct 2019 - "Dan, we could improve our mark list sorting with that..." - Peter

Jul 2020 - https://github.com/dotnet/runtime/pull/37159 - "Vxsort"
faster sorting code from Dan Shechter, and bigger mark list, used for
Marking, using AVX2/AVX512F
👉 shorter GC pauses 😍 29 / 36

https://www.youtube.com/watch?v=M6HaSvifxwQ
https://www.youtube.com/watch?v=LPcjSdob9AA
https://github.com/dotnet/runtime/pull/37159

Mark phase - sidenote #1

30 / 36

Mark phase - sidenote #1

"translate it to the proper address of a managed object" - aka interior pointers

30 / 36

Mark phase - sidenote #1

"translate it to the proper address of a managed object" - aka interior pointers

30 / 36

Mark phase - sidenote #1

"translate it to the proper address of a managed object" - aka interior pointers

void GCHeap::Promote(Object** ppObject, ..., uint32_t flags)
{
 // ...
 if (flags & GC_CALL_INTERIOR)
 {
 if ((o = hp->find_object (o)) == 0)
 {
 return;
 } 30 / 36

Mark phase - sidenote #1

"translate it to the proper address of a managed object" - aka interior pointers

void GCHeap::Promote(Object** ppObject, ..., uint32_t flags)
{
 // ...
 if (flags & GC_CALL_INTERIOR)
 {
 if ((o = hp->find_object (o)) == 0) // based on bricks - although not yet available at Mark phase
 {
 return;
 } 31 / 36

Mark phase - sidenote #2

32 / 36

Mark phase - sidenote #2

32 / 36

Mark phase - sidenote #2

shortest root path
dependency subgraph – total size
retained subgraph – retained size

32 / 36

Mark phase - inside code

Mark phase starts in the gc_heap::mark_phase and has calls to:

GCScan::GcScanRoots that calls Thread::StackWalkFrames with GCHeap::Promote
CFinalize::GcScanRoots using GCHeap::Promote
GCScan::GcScanHandles (with GCHeap::Promote callback) methods that calls
Ref_TracePinningRoots (for types HNDTYPE_PINNED and HNDTYPE_ASYNCPINNED),
Ref_TraceNormalRoots (fe. for type HNDTYPE_STRONG) etc.
gc_heap::mark_through_cards_for_segments (for SOH) and
gc_heap::mark_through_cards_for_large_objects (for LOH)
GCScan::GcDhInitialScan and scan_dependent_handles handle scanning
"dependent handles"

GCHeap::Promote method calls the go_through_object_cl macro that triggers
traversal through objects’ references. The main work is done in
gc_heap::mark_object_simple1 that realizes depth-�rst object graph traversal
using "mark stack" called mark_stack_array (with mark_stack_bos and
mark_stack_tos indexes pointing to the bottom and the top of the stack).
Setting "mark bit" happens in gc_mark(o)/gc_mark1(o) methods.

33 / 36

Mark phase - inside code

Additionally, gc_heap::mark_object_simple/gc_heap::mark_object_simple1
methods, while traversal, are using m_boundary macro to populare mark_list.

Mark list is maintained/sorted only for "non concurrent" ephemeral GC
("multiple segments are more complex to handle and the list is likely to
over�ow"). Sorting happens in:

mark_phase (only iff PARALLEL_MARK_LIST_SORT & MULTIPLE_HEAPS) calling
gc_heap::sort_mark_list (using do_vxsort if USE_VXSORT)
plan_phase (only iff !MULTIPLE_HEAPS) using do_vxsort (if USE_VXSORT)

If mark list over�ows, we expand it up to maximum in gc_heap::grow_mark_list:

// with vectorized sorting, we can use bigger mark lists
#ifdef USE_VXSORT
#ifdef MULTIPLE_HEAPS
 const size_t MAX_MARK_LIST_SIZE = IsSupportedInstructionSet (InstructionSet::AVX2) ? 1000 * 1024 : 200 * 102
#else //MULTIPLE_HEAPS
 const size_t MAX_MARK_LIST_SIZE = IsSupportedInstructionSet (InstructionSet::AVX2) ? 32 * 1024 : 16 * 1024;
#endif //MULTIPLE_HEAPS
#else
... 34 / 36

Thank you! Any questions?!

35 / 36

36 / 36

