A WARNING
INTERNALS

INCLUDED

©
/S

NET GC Internals

Mark phase

@konradkokosa / @dotnetosorg

1/36

NET GC Internals

(Non-Concurrent) Mark phase

2 /36

.NET GC Internals Agenda

e Introduction - roadmap and fundamentals, source code, ...

e Mark phase - roots, object graph traversal, mark stack, mark/pinned flag, mark
list, ...

e Concurrent Mark phase - mark array/mark word, concurrent visiting, floating
garbage, write watch list, ...

e Plan phase - gap, plug, plug tree, brick table, pinned plug, pre/oost plug, ...

e Sweep phase - free list threading, concurrent sweep, ...

e Compact phase - relocate references, compact, ...

e Generations - physical organization, card tables, ...

e Allocations - bump pointer allocator, free list allocator, allocation context, ...

3/36

.NET GC Internals Agenda

Introduction - roadmap and fundamentals, source code, ...

Mark phase - roots, object graph traversal, mark stack, mark/pinned flag, mark
list, ...

Concurrent Mark phase - mark array/mark word, concurrent visiting, floating
garbage, write watch list, ...

Plan phase - gap, plug, plug tree, brick table, pinned plug, pre/post plug, ...
Sweep phase - free list threading, concurrent sweep, ...

Compact phase - relocate references, compact, ...

Generations - physical organization, card tables, ...

Allocations - bump pointer allocator, free list allocator, allocation context, ...
Roots internals - stack roots, GCInfo, partially/full interruptible methods, statics,
Thread-local Statics (TLS), ...

3/36

.NET GC Internals Agenda

e Introduction - roadmap and fundamentals, source code, ...

e Mark phase - roots, object graph traversal, mark stack, mark/pinned flag, mark
list, ...

e Concurrent Mark phase - mark array/mark word, concurrent visiting, floating

garbage, write watch list, ...

Plan phase - gap, plug, plug tree, brick table, pinned plug, pre/post plug, ...

Sweep phase - free list threading, concurrent sweep, ...

Compact phase - relocate references, compact, ...

Generations - physical organization, card tables, ...

Allocations - bump pointer allocator, free list allocator, allocation context, ...

Roots internals - stack roots, GCInfo, partially/full interruptible methods, statics,

Thread-local Statics (TLS), ...

Q&A - "but why can't | manually delete an object?", ...

3/36

02. .NET GC Internals - Mark phase

This module agenda:

e introduction
o object graph
o object graph traversal
e implementation
traversal
pin/mark flag
mark stack & mark list
vectorized mark list sorting "story"

e inside code .NET runtime &

@)

© O O

4 [36

Mark phase

We need to know which objects are "live"...

[[l < [DIEIFETLG]

5/36

Object graph

In memory:

[A T8l € [OlEJFE] G]

6/36

Object graph

INn Mmemory:

Type data:

record
record
record
record
record
record
record

A(B b, D d);
B(int X);
C(B b, F f);
D(E e);

E(G g);
F(int X);
G(int Z2);

|

A

8] ¢

| DI EJE] G |-

7 /36

Object graph

INn Mmemory:

Type data:

record
record
record
record
record
record
record

A(B b, D d);
B(int X);
C(B b, F f);
D(E e);

E(G g);
F(int X);
G(int Z2);

Current "state":

var a
var d
..we

new AC..., ...);
new D(...);

are here. ..

[A

8] ¢

| DI EJE] G |-

8 /36

Object graph

INn Mmemory:

Type data:

record
record
record
record
record
record
record

A(B b, D d);
B(int X);
C(B b, F f);
D(E e);

E(G g);
F(int X);
G(int Z2);

Current "state":

var a
var d
..we

new AC..., ...);
new D(...);

are here. ..

|

A

8] ¢

| |EJTE| G |-

Object graph:

Ybéhh

o=

o e

9/36

Object graph traversal

Yoots.

kh\v BEEI -

L i—-__J; I l '
DM oL 11

10/ 36

Object graph traversal

Yoo'ts

/36

Object graph traversal

Yoo'hs

"@ﬁj{ ==
D@/EE am

To vi‘sff; AL

12 /36

Object graph traversal

de&

"@WE{ ==
D@/EE am

To visit: A,D O, B

13/ 36

Object graph traversal

Yoo'hs

"@WE{ ==
D@/EE am

To vi‘sff; ﬁ,D] OB

14/ 36

Object graph traversal

de&

"@J{ ==
D@/EE am

To uﬁSdﬁ:fﬁtlfD{E%Ei

15/ 36

Object graph traversal

Yoo'hs

"@J{ ==
D@/EE am

To uisit: ﬁ,,ﬁ] ¢J B,E

16/ 36

Object graph traversal

Yoo'hs

@E ==
D@/EE am

To uisit: ﬁ,,ﬁ] ¢J B,E

17 / 36

Object graph traversal

de&

To uisit: ﬁ,,ﬁ] ¢JﬁJE]G

18 / 36

Object graph traversal

Yoo'hs

To vfsd"i ﬁ;/ﬁ, ¢16;IZ1C’

19/ 36

Object graph traversal

wi::@/ E{
T

To vfsd"i ﬁ;/ﬁ, ¢;5,zac"

20/ 36

Object graph traversal

wi::@/ E{
T

To vfsd"i ﬁ;/ﬁ, ¢;5,z:¢

21/ 36

Object graph traversal

Yo ots

o
/i

22 /36

Object graph traversal

\'bo"'.s

22 /36

Object graph traversal

\'bots

F’\ ==
.

E

We have just discovered reachability of the objects (from at least one root) by
marking algorithm.

22 /36

Object graph traversal

Yo ots

"i—\.ﬁi'\ ==
S

E

We have just discovered reachability of the objects (from at least one root) by
marking algorithm.

Reachability is the closest we can get to true "usability" - we don't know the future.

22 /36

Object graph traversal - roots

stack

registers

static/thread-local static data

finalization queue

Inter-generational references ("cards", "card tables") - we will return to that...

23/ 36

Mark phase implementation

Sequentially for every root type (like stack, finalization, ...):

1. Collect the roots into the "to visit list" (the mark stack)
2. For each given target address addr from the mark stack:
o set pinning flag (in the Header) - if the runtime says so
o start traversal:
= skip already visited object
= mark an object (in the MT)
= add outgoing references to the mark stack

24 [36

Mark phase implementation

Sequentially for every root type (like stack, finalization, ...):

1. Collect the roots into the "to visit list" (the mark stack)
2. For each given target address addr from the mark stack:
o translate it to the proper address of a managed object - we will return to that...
o set pinning flag (in the Header) - if the runtime says so
o start traversal:
= skip already visited object
= mark an object (in the MT)
= add outgoing references to the mark stack

25/ 36

Mark phase implementation

Sequentially for every root type (like stack, finalization, ...):

1. Collect the roots into the "to visit list" (the mark stack)
2. For each given target address addr from the mark stack:
o translate it to the proper address of a managed object - we will return to that...
o set pinning flag (in the Header) - if the runtime says so
o start traversal:
= skip already visited object
= mark an object (in the MT)
= add its address to the mark list (if not overflowed)
= add outgoing references to the mark stack

26 /36

Mark phase - let's draw!

\’oots -
B
"”\ f\)\ F.
A f p—
\ C N
/or
» %H///figﬁ} 4
R R H (M.
Mark stack: Mark list:

27 /36

Mark phase

Findings:

e mark and pinned flags are added only during the GC - and cleared afterwards
at Plan phase
o ie. by looking at a regular memory dump in-between GCs, we won't see those
bits set
o diagnhostics tool needs to traverse the graph from roots to notice an object is
pinned
e mark stack is used as safier approach that recursion
e mark list will help us later, if sorted
e itis pretty a lot of work to do (and non-sequential memory access...)!

28 /36

Mark phase - "mark list sorting story"

“‘é" ““ - How does GC work?

IT'S 6X FASTER T

l:”lf le }'EeZ;lcl; |N TH'S TA'_K 27x (;;”Ifle}'iemcl;
. HTTPS://DOTNETOS. ORG ‘ HTTPS://DOTNETOS.0RG
Dan Schechter - .NET Intrinsics in Peter Sollich - The .NET Garbage
CoreCLR 3.0 Collector

29/ 36

https://www.youtube.com/watch?v=M6HaSvifxwQ
https://www.youtube.com/watch?v=LPcjSdob9AA

Mark phase - "mark list sorting story"

IT'S 6X FASTER
-.L 28 INTHIS TALK: 2.7X
HTTPS://DOTNET0S.0RG i HTTPS://DOTNET0S.0RG
Dan Schechter - .NET Intrinsics in Peter Sollich - The .NET Garbage
CoreCLR 3.0 Collector

e Oct 2019 - "Dan, we could improve our mark list sorting with that..." - Peter

29/ 36

https://www.youtube.com/watch?v=M6HaSvifxwQ
https://www.youtube.com/watch?v=LPcjSdob9AA

Mark phase - "mark list sorting story"

P
IT'S 6X FASTER
l;”ljr le ;an\;lcl; |N TH'S '|'A|_K 27X ‘:’7(;3;2‘;;:
=
HTTPS://DOTNETOS. ORG ‘ HTTPS://DOTNETOS.0RG
Dan Schechter - .NET Intrinsics in Peter Sollich - The .NET Garbage
CoreCLR 3.0 Collector

e Oct 2019 - "Dan, we could improve our mark list sorting with that..." - Peter

e Jul 2020 - https://github.com/dotnet/runtime/pull/37159 - "Vxsort"
o faster sorting code from Dan Shechter, and bigger mark list, used for
Marking, using AVX2/AVX512F

o ¥ shorter GC pauses &

29/ 36

https://www.youtube.com/watch?v=M6HaSvifxwQ
https://www.youtube.com/watch?v=LPcjSdob9AA
https://github.com/dotnet/runtime/pull/37159

Mark phase - sidenote #1

30/ 36

Mark phase - sidenote #1

"translate it to the proper address of a managed object" - aka interior pointers

30/ 36

Mark phase - sidenote #1

"translate it to the proper address of a managed object" - aka interior pointers

Yoots

3
\.
/

30/ 36

Mark phase - sidenote #1

"translate it to the proper address of a managed object" - aka interior pointers

‘Ybétk

K/\E_/
vel

i=‘u%p_3J24
void GCHeap: :Promote(Object** ppObject, ..., uint32_t flags)
{
// ...
if (flags & GC_CALL_INTERIOR)
{

if ((o = hp->find_object (o)) == 0)

{
turn;
) return 30 /36

Mark phase - sidenote #1

"translate it to the proper address of a managed object" - aka interior pointers

‘Ybétk

/\E/
vel

¢ = vefl 9.2;

void GCHeap: :Promote(Object** ppObject, ..., uint32_t flags)
{

// ...

if (flags & GC_CALL_INTERIOR)

{

if (o = hp->find_object (o)) == 0) // based on bricks - although not yet available at Mark phase
{

turn;
) return 3'| /36

Mark phase - sidenote #2

32 /36

Mark phase - sidenote #2

root —
O—>= A Kk > B [.

32 /36

Mark phase - sidenote #2

root /£¥——f
/ \.

O AN = B K > F
> c | 6 [> H
o J

e shortest root path
e dependency subgraph - total size
e retained subgraph — retained size

32 /36

Mark phase - inside code

Mark phase starts in the gc_heap: :mark_phase and has calls to:

e GCScan: :GecScanRoots that calls Thread: : StackWalkFrames with GCHeap: :Promote

e CFinalize::GcScanRoots USing GCHeap: :Promote

e GCScan: :GcScanHandles (With GCHeap: :Promote callback) methods that calls
Ref_TracePinningRoots (for types HNDTYPE_PINNED and HNDTYPE_ASYNCPINNED),
Ref_TraceNormalRoots (fe. for type HNDTYPE_STRONG) etc.

e gc_heap: :mark_through_cards_for_segments (for SOH) and
gc_heap: :mark_through_cards_for_large_objects (for LOH)

e GCScan::GecDhInitialScan and scan_dependent_handles handle scanning
"dependent handles"

GCHeap: :Promote method calls the go_through_object_cl macro that triggers
traversal through objects’ references. The main work is done in

gc_heap: :mark_object_simplel that realizes depth-first object graph traversal
using "mark stack" called mark_stack_array (with mark_stack_bos and
mark_stack_tos indexes pointing to the bottom and the top of the stack).

Setting "mark bit" happens in gc_mark(o)/gc_mark1(o) methods. 23 /36

Mark phase - inside code

Additionally, gc_heap: :mark_object_simple/gc_heap: :mark_object_simple1
methods, while traversal, are using m_boundary macro to populare mark_list.

Mark list is maintained/sorted only for "non concurrent" ephemeral GC

("multiple segments are more complex to handle and the list is likely to
overflow"). Sorting happens in:

e mark_phase (only iff PARALLEL_MARK_LIST_SORT & MULTIPLE_HEAPS) calling
gc_heap: :sort_mark_list (using do_vxsort if USE_VXSORT)
e plan_phase (only iff 'MULTIPLE_HEAPS) using do_vxsort (if USE_VXSORT)

If mark list overflows, we expand it up to maximum in gc_heap: :grow_mark_list:

// with vectorized sorting, we can use bigger mark lists
#ifdef USE_VXSORT
#ifdef MULTIPLE_HEAPS

const size_t MAX_MARK_LIST_SIZE
#else //MULTIPLE_HEAPS

const size_t MAX_MARK_LIST_SIZE
#endif //MULTIPLE_HEAPS
#else

IsSupportedInstructionSet (InstructionSet::AVX2) ? 1000 * 1024 : 200 * 102

IsSupportedInstructionSet (InstructionSet::AVX2) ? 32 * 1024 : 16 * 1024;

34 [36

Thank you! Any questions?!

35/ 36

36 /36

