A WARNING
INTERNALS

INCLUDED

©
/S

NET GC Internals

Allocations

@konradkokosa / @dotnetosorg

1/29

.NET GC Internals Agenda

e Introduction - roadmap and fundamentals, source code, ...

e Mark phase - roots, object graph traversal, mark stack, mark/pinned flag, mark
list, ...

e Concurrent Mark phase - mark array/mark word, concurrent visiting, floating

garbage, write watch list, ...

Plan phase - gap, plug, plug tree, brick table, pinned plug, pre/post plug, ...

Sweep phase - free list threading, concurrent sweep, ...

Compact phase - relocate references, compact, ...

Generations - physical organization, card tables, ...

Allocations - bump pointer allocator, free list allocator, allocation context, ...

Roots internals - stack roots, GCInfo, partially/full interruptible methods, statics,

Thread-local Statics (TLS), ...

Q&A - "but why can't | manually delete an object?", ...

2/29

.NET GC Internals Agenda

e Introduction - roadmap and fundamentals, source code, ...

e Mark phase - roots, object graph traversal, mark stack, mark/pinned flag, mark
list, ...

e Concurrent Mark phase - mark array/mark word, concurrent visiting, floating

garbage, write watch list, ...

Plan phase - gap, plug, plug tree, brick table, pinned plug, pre/post plug, ...

Sweep phase - free list threading, concurrent sweep, ...

Compact phase - relocate references, compact, ...

Allocations - bump pointer allocator, free list allocator, allocation context, ...

Generations - physical organization, card tables, ...

Roots internals - stack roots, GCInfo, partially/full interruptible methods, statics,

Thread-local Statics (TLS), ...

Q&A - "but why can't | manually delete an object?", ...

3/29

Bump pointer allocator

4 [29

Bump pointer allocator

5/29

Bump pointer allocator

?P
R
%@
llﬂlb ¢l o |

6/29

Bump pointer allocator

V/ 4 ﬁ//}{%/////
IIAIIAIII NI,
allocation
pointer

////////////////////////////
? 7 s //////// 7
Vinmthmhintitid)

object A allocation
address pointer

7 /29

Bump pointer allocator

allocation
context
A
o |
*’?if‘},f/zf};{ﬁv’;f; I, 4 ‘
Zeroe
LIS, T
allocation allocation
pointer limit

Allocation quantum — 8 kB (1-8kB)

8/29

reserved
A

’)
commited ;
A :
! ! i
: allocation : .
: begin context : :
segment o) ; ;
f/ 5‘7 /7 zeroed
segment_info objects

allocation allocation
pointer limit

9/29

reserved
A

commited

allocation

unused free space context

7. 7, 00 77
(@) 7 7 dhiects, 7/ 7/]zeroed
S LS Vs LSS S, S
pushed back allocation context
LSS S A S S
(b) 7 bieets | zeroed
S ST S A

"Dummy" bump pointer allocation and fragmentation problem:

e (a) Sweeping Garbage Collection produces fragmentation and if allocation
context is not aware of free memory - sad

e (b) Compact Garbage Collection reclaims memory by pushing back allocation
context but requires a lot of memory copying

10/29

reserved
A

commited
A

allocation
context

5 A
Vi, 7 7 7

objects free items

allocation allocation
pointer limit

"Smart" bump pointer allocation reuses free space!

11/29

reserved
A

commited
A

allocation
context

5 [t
w VA 7 7. 7

objects free items

allocation allocation
pointer limit

"Smart" bump pointer allocation reuses free space!

(*) we will return to that!

11/29

resiwed

f ||
commited i

A i

f ! |
i : i
; allocation allocation allocation ; :
! context 1 context 2 context 3 : !
E 1] I_A_\ T A Y A] : i

segment ‘ % & / d
info [/%é % 4{3@ / zeroed | zeroe
1 1

_-ge n2 1gen 1

gen0

12/29

reserved
A

] 1

commited :

A i

{ ! i
' : '
1 1 H
' allocation allocation allocation ; :
: context 1 context 2 context 3 ! H
: ; :
i : H

~A —A———A
(a) se?nToem s 19‘-0& / % zeroed zeroed

objects free items

allocation allocation allocation
context1 context2 context3

A A——Ar—

[
segment / D
(b) o W 1??0 zeroed | zeroed

Compacting still makes sense - from time to time!

13/29

Free-list allocator

14 /29

Free-list allocator

e searching through a free items list to find a gap big enough

15/ 29

Free-list allocator

e searching through a free items list to find a gap big enough
o best-fit - the smallest block fitting (little leftovers)

15/ 29

Free-list allocator

e searching through a free items list to find a gap big enough
o best-fit - the smallest block fitting (little leftovers)
o first-fit - the first block fitting (faster but leftovers)

15/ 29

Free-list allocator

e searching through a free items list to find a gap big enough
o best-fit - the smallest block fitting (little leftovers)
o first-fit - the first block fitting (faster but leftovers)
o buckets - first-fit into of buckets of various size ranges

15/ 29

Free-list allocator

e searching through a free items list to find a gap big enough
o best-fit - the smallest block fitting (little leftovers)
o first-fit - the first block fitting (faster but leftovers)
o buckets - first-fit into of buckets of various size ranges

e in .NET free list is (partially) stored on the heap itself

keeps size as an array

keeps special "undo" address

0O O O O O

"free object" with a predefined MT

for sizes >= 2*minimum object size

keeps address of the next "free object" (single-linked list)

unused data

undo

MT

size

Z

"free object"
MethodTable

next "free object"

undo MT size

/)

"free oLjeot"

MethodTable

7 2
7

next "free object”

15/ 29

first_bucket_size
allocator £ num_buckets

Free-list allocator - Buckets as metadata

DUCKEK
alloc_list alloc_list alloc_list

hea¥ tail head tail hea¥_ tail
free space free space free space
—A—
Y/ o o o @
) B 2 AR) A N
/
Region First bucket size Number of buckets
Generation 0 Int.Max 1
Generation 1 Int.Max 1

Generation 2 256 B (64-bit) 12
128 B (32-bit) 12
LOH 64 kB 7

For gen O and 1- free item is being discarded (becomes unusable fragmentation) if
it fails to fit the required size.

16/29

Free-list allocator - Buckets as metadata

first_bucket_size

allocator £ num_buckets

DUCKEB\K
alloc_list alloc_list alloc_list

hea¥ tail head tail hea¥_tail
free space free space free space
V7, /= IS i 8l=|® i A8=|® %
) EEER % HEE . HEE 4
——

Region

First bucket size

Number of buckets

Generation 0
Generation 1

Generation 2

LOH

Int.Max
Int.Max

256 B (64-bit)
128 B (32-hit)

64 kB

1
1

12
12

7

For gen O and 1- free item is being discarded (becomes unusable fragmentation) if
it fails to fit the required size.
Hola! Why we need gen 1 and 2 for free-list allocation?!

16/29

Free-list allocator

Undo is used to... undo planned free-items usage (for compacting) if sweeping has
been decided. In other words - to revert typical "unlink" operation on single-linked
list element.

free space free space free space
L) n [] 1

TR V7% 17
Z _/_ ~____—

unlink_item

free space N\ free space
A A

v \

size
undo
size
undo
MT
size
N

/4

size

undo

MT

size

N\

| Lr&do
SIMT

SiZe

' undo

17 /29

Allocation... creating a new object

18 /29

Creating a new object

var obj = new SomeClass();

becomes

newobj instance void SomeClass::.ctor()

Question:

e wWho resets object's fields to defaults?
e Who decides where to allocate (SOH/LOH)?

19/29

newobj's JIT decision path

getNewHelperStatic

LargeObjectSize
I

True False

True in case of
/ \ Server GC or
(JIT_New | . .
\ /) multiple logical
. Windows
non-Windows processors

Use allocation

[JIT_NewS_MP_FastPortable context

J

True False

\

| JIT_TrialAllocSFastMP_InlineGetThread | KJIT_TriaIAIIocSFaStMP

. /

N

20/ 29

newobj's JIT decision path

getNewHelperStatic

u
- True in case of
‘,/ N Server GC or
| JIT_New) Itinle logical
multiple logica
\\ ,,/ k Windows P g
non-Windows processors

Use allocation

[JIT_NewS_MP_FastPortable | context
N
True False
g [N
| JIT_TrialAllocSFastMP_InlineGetThread \ \\ JIT_TrialAllocSFastMP)
e AN S

InitJITHelpers1 initializes "fast helpers" in JIT, like CORINFO_HELP_NEWSFAST or
CORINFO_HELP_NEWARR_1_VC. BTW, JIT_NewS_MP_FastPortable on non-Windows also uses
allocation context. 20/ 29

Small Object Heap allocation

e mostly - bump-pointer allocation inside the current allocation context
o JIT_TrialAllocSFastMP_InlineGetThread
o fallbacks to JIT_NEW in case of allocation context being full

21/29

; As input, rcx contains MethodTable pointer
; As result, rax contains new object address

LEAF_ENTRY JIT_TrialAllocSFastMP_InlineGetThread, _TEXT
; Read object size into edx
; m_BaseSize is guaranteed to be a multiple of 8.
mov edx, [rcx + OFFSET__MethodTable__m_BaseSize]

; Read Thread Local Storage address into ri1
INLINE_GETTHREAD r11

; Read alloc_limit into r10
mov r10, [r11 + OFFSET__Thread__m_alloc_context__alloc_limit]

; Read alloct_ptr into rax
mov rax, [r11 + OFFSET__Thread__m_alloc_context__alloc_ptr]

add rdx, rax ; rdx = alloc_ptr + size
cmp rdx, r10 ; is rdx smaller than alloc_limit
ja AllocFailed

; Update alloc_ptr in TLS
mov [r11 + OFFSET__Thread__m_alloc_context__alloc_ptr], rdx

; Store MT under alloc_ptr address (constituting new object)
mov [rax], rcx
ret

AllocFailed:
jmp JIT_NEW ; fast-path failed, jump to slow-path

LEAF_END JIT_TrialAllocSFastMP_InlineGetThread, _TEXT

22 /29

JIT_NEW helper

The same as used for objects with finalizer or in LOH.

e "slower" C++ bump-pointer allocator (because it is generic for both SOH/LOH)
o if fails, the whole story begins - the true "slow-path":
o trying to use existing, unused space in. It will:
= Try to use free list to find a suitable free gap for a new allocation context -
free-list allocation of a new allocation context
= Try to adjust allocation limit inside already Commited memory
= Try to Commit more memory from Reserved memory and adjust
allocation limit inside.
o If all above fails, GC will be triggered
o If all above fails - OutOfMemoryException :(

reserved
A

commited

allocation

context

!_A_\

segment %;/57 dab 2;///
info %/f/ i %

T

N
N

77 7
5// A
Z // A
s L

i

objects free items

allocation allocation
pointer limit

23/ 29

soh_try_fit

a_fit_free_list_p

True%ﬁse—{a fit_segment_end p}

can_use_existing="Tr free list item found?
adjust limit &
True
zero memory
True size fits in Commited?

False

pages commited?

try to Commit more
Ise pages

4.©

can_use_existing = False

size fits in Reserved?

24 [29

a_state_start

oo |

got_full_compadting ge?

/ a_sum_che&_a;: wait_for_bgc \\

a_state _mIF-t_A llocate

bee_in progress?

can_use Jexisting?
" True

Faize

—
fakse
— _Tha |

cummit_[diledy

T
%
@n_use fexisting ?
- "
o Fdse-
T

commit_failed?

can_use_existing?

25/29

Large Object Heap allocation

e free-list allocation and simplified bump-pointer at the end of the segment
o no use of allocation context
o ..thus synchronization overhead
o .. and memory zeroing overhead
e only "slow-path":
o try to use free list to find a suitable free gap for an object
o in each segment containing LOH:
= try to adjust allocation limit inside already Committed memory,
= try to Commit more memory from Reserved memory and adjust
allocation limit inside
o if all above fails, GC will be triggered.
o If all above fails - OutOfMemoryException :(

26 /29

Pinned Object Heap allocation

new allocation API: T[] GC.AllocateArray<T> (int length, bool pinned = false)
It adds GC_ALLOC_FLAGS.GC_ALLOC_PINNED_OBJECT_HEAP flag to AllocateNewArray

IN the end it calls allocate_uoh_object on poh_generation (#4)

which is shared between LOH and POH

27 /29

https://docs.microsoft.com/en-us/dotnet/api/system.gc.allocatearray?view=net-5.0

Allocation overhead - summary

e SOH - super-fast bump-pointer inside allocation context (AC) but...
o fallback to free-list finding of new AC or extending commit/reserve segment
o .. which requires zeroing such a new AC
o orthe GC
e LOH & POH - dominated by zeroing cost (nhow, optional) and...
o additionally synchronized
o even more painful in LOH with the Concurrent GC - LOH allocations blocked
for (part) of the time of the Concurrent Sweep
= "LOH Allocation Pause (due to background GC) > 200 Msec" section in
PerfView's GCStats

e stackalloc - only memory region zeroing cost (if not disabled &)

28 /29

Allocations

"AllocateObject is calling in the end Object* GCHeap::Alloc (with flags like
GC_ALLOC_FINALIZE or GC_ALLOC_LARGE_OBJECT_HEAP), calling allocate_uoh_object for
UOH (User Old Heap) - LOH & POH. Or calling gc_heap: :allocate for SOH.

If the current allocation context is not enough, it calls

gc_heap: :allocate_more_space and then gc_heap: :try_allocate_more_space
internally."

29 /29

